Yayın
Metric dimensions of bicyclic graphs

dc.authorid0000-0002-5131-577X
dc.authorscopusid58119948300
dc.contributor.authorKhan, Asad
dc.contributor.authorHaidar, Ghulam
dc.contributor.authorAbbas, Naeem
dc.contributor.authorKhan, Murad ul Islam
dc.contributor.authorNiazi, Azmat Ullah Khan
dc.contributor.authorKhan, Asad ul Islam
dc.contributor.otherYönetim Bilimleri Fakültesi, İktisat Bölümü
dc.date.accessioned2023-03-06T07:00:00Z
dc.date.available2023-03-06T07:00:00Z
dc.date.issued2023
dc.departmentİHÜ, Yönetim Bilimleri Fakültesi, İktisat Bölümü
dc.description.abstractThe distance d(va, vb) between two vertices of a simple connected graph G is the length of the shortest path between va and vb. Vertices va, vb of G are considered to be resolved by a vertex v if d(va, v) 6= d(vb, v). An ordered set W = fv1, v2, v3, . . . , vsg V(G) is said to be a resolving set for G, if for any va, vb 2 V(G), 9 vi 2 W 3 d(va, vi) 6= d(vb, vi). The representation of vertex v with respect to W is denoted by r(vjW) and is an s-vector(s-tuple) (d(v, v1), d(v, v2), d(v, v3), . . . , d(v, vs)). Using representation r(vjW), we can say that W is a resolving set if, for any two vertices va, vb 2 V(G), we have r(vajW) 6= r(vbjW). A minimal resolving set is termed a metric basis for G. The cardinality of the metric basis set is called the metric dimension of G, represented by dim(G). In this article, we study the metric dimension of two types of bicyclic graphs. The obtained results prove that they have constant metric dimension.
dc.identifier.citationKhan, A., Haidar, G., Khan, M. I., Niazi, A. U. K. ve Khan, A. I. (2023). Metric dimensions of bicyclic graphs. Mathematics, 11(4), 1-17. https://doi.org/10.3390/math11040869
dc.identifier.doi10.3390/math11040869
dc.identifier.endpage17
dc.identifier.issn2227-7390
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85149031293
dc.identifier.scopusqualityQ1
dc.identifier.startpage1
dc.identifier.urihttps://doi.org/10.3390/math11040869
dc.identifier.urihttps://hdl.handle.net/20.500.12154/2122
dc.identifier.volume11
dc.identifier.wosWOS:000941616400001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWeb of Science
dc.institutionauthorKhan, Asad ul Islam
dc.institutionauthorid0000-0002-5131-577X
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofMathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectGraph Theory
dc.subjectBicyclic Graph
dc.subjectMetric Basis
dc.subjectResolving Set
dc.subjectMetric Dimensions
dc.titleMetric dimensions of bicyclic graphs
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication5d56d061-267c-4b33-8b78-b50e651ee5aa
relation.isAuthorOfPublication.latestForDiscovery5d56d061-267c-4b33-8b78-b50e651ee5aa
relation.isOrgUnitOfPublication9d1809d1-3541-41aa-94ed-639736b7e16f
relation.isOrgUnitOfPublication.latestForDiscovery9d1809d1-3541-41aa-94ed-639736b7e16f

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
khan-a.pdf
Boyut:
304.6 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.52 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: