Yayın
Public attitudes toward higher education using sentiment analysis and topic modeling

dc.authorid0000-0002-5131-577X
dc.authorid0000-0002-9376-2084
dc.authorid0000-0001-8450-7551
dc.contributor.authorGöçen, Ahmet
dc.contributor.authorIbrahim, Mahat Maalim
dc.contributor.authorKhan, Asad ul Islam
dc.contributor.otherYönetim Bilimleri Fakültesi, İktisat Bölümü
dc.date.accessioned2024-11-26T07:39:32Z
dc.date.available2024-11-26T07:39:32Z
dc.date.issued2024
dc.departmentİHÜ, Lisansüstü Eğitim Enstitüsü, İktisat Ana Bilim Dalı
dc.departmentİHÜ, Yönetim Bilimleri Fakültesi, İktisat Bölümü
dc.description.abstractThis study examines higher education through data-mining methodologies, aiming to uncover key themes and sentiments in global discourse. Utilizing sentiment analysis and topic modeling, the research analyzes 157,943 tweets from 84,423 unique users over a five-month period (January to May 2023). This period was selected, coinciding with the rise of artificial intelligence (AI) tools, particularly ChatGPT. The study investigates the discussions, emotional tones, and dominant topics shaping the global narrative of higher education within X (Twitter) data. Key findings include the geographical distribution of tweets and the most frequent positive and negative perceptions. It also addresses critical issues such as affordability, accessibility, and funding in higher education. Furthermore, the data shows public reactions to AI in higher education are initially negative, while higher education tweets are primarily characterized by positivity and optimism. The higher education tweets are mainly posted on the weekend, with decreased activity during weekdays. This research provides insights into the evolving higher education landscape amid rapid technological advancements.
dc.identifier.citationGöçen, A., Ibrahim, M. M. ve Khan, A. I. (2024). Public attitudes toward higher education using sentiment analysis and topic modeling. Discover Artificial Intelligence, 4(1), 1-19. https://www.doi.org/10.1007/s44163-024-00195-4
dc.identifier.doi10.1007/s44163-024-00195-4
dc.identifier.endpage19
dc.identifier.issn2731-0809
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85209119117
dc.identifier.scopusqualityN/A
dc.identifier.startpage1
dc.identifier.urihttps://www.doi.org/10.1007/s44163-024-00195-4
dc.identifier.urihttps://hdl.handle.net/20.500.12154/3094
dc.identifier.volume4
dc.indekslendigikaynakScopus
dc.institutionauthorIbrahim, Mahat Maalim
dc.institutionauthorKhan, Asad ul Islam
dc.institutionauthorid0000-0002-5131-577X
dc.institutionauthorid0000-0001-8450-7551
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.ispartofDiscover Artificial Intelligence
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Öğrenci
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.relation.publicationcategoryÖğrenci
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHigher Education
dc.subjectText Mining
dc.subjectTopic Modeling
dc.subjectX/Twitter
dc.subjectSentiment Analysis
dc.subjectArtificial Intelligence
dc.subjectChatGPT
dc.titlePublic attitudes toward higher education using sentiment analysis and topic modeling
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication5d56d061-267c-4b33-8b78-b50e651ee5aa
relation.isAuthorOfPublication.latestForDiscovery5d56d061-267c-4b33-8b78-b50e651ee5aa
relation.isOrgUnitOfPublication9d1809d1-3541-41aa-94ed-639736b7e16f
relation.isOrgUnitOfPublication.latestForDiscovery9d1809d1-3541-41aa-94ed-639736b7e16f

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
khan-a.pdf
Boyut:
3.2 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: