The probabilities of type I and II error of null of cointegration tests: A Monte Carlo comparison

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Plos One

Erişim Hakkı

info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Organizasyon Birimi
Yönetim Bilimleri Fakültesi, İktisat Bölümü
İktisat Bölümü, başta Türkiye ve çevre ülkeler olmak üzere küresel ekonomileri anlayan, var olan sorunları analiz ederken, iktisadi kuramları ve kavramları yetkin ve özgün bir şekilde kullanma becerisine sahip bireyler yetiştirmeyi amaçlamaktadır.

Dergi sayısı

Özet

This paper evaluates the performance of eight tests with null hypothesis of cointegration on basis of probabilities of type I and II errors using Monte Carlo simulations. This study uses a variety of 132 different data generations covering three cases of deterministic part and four sample sizes. The three cases of deterministic part considered are: absence of both intercept and linear time trend, presence of only the intercept and presence of both the intercept and linear time trend. It is found that all of tests have either larger or smaller probabilities of type I error and concluded that tests face either problems of over rejection or under rejection, when asymptotic critical values are used. It is also concluded that use of simulated critical values leads to controlled probability of type I error. So, the use of asymptotic critical values may be avoided, and the use of simulated critical values is highly recommended. It is found and concluded that the simple LM test based on KPSS statistic performs better than rest for all specifications of deterministic part and sample sizes.

Açıklama

Anahtar Kelimeler

Case report, Clinical Article, Critical Value, Monte Carlo Method, Null Hypothesis, Probability

Kaynak

Plos One

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

17

Sayı

1

Künye

Aysan, A. F., Güney, İ., Isac, N., Khan, A. I. (2022). The probabilities of type I and II error of null of cointegration tests: A Monte Carlo comparison. Plos One, 17(1). https://doi.org/10.1371/journal.pone.0259994