Delen, Dursun
Yükleniyor...
Araştırma projeleri
Organizasyon Birimleri
Lisansüstü Eğitim Enstitüsü, İşletme Ana Bilim Dalı
İş dünyasının giderek karmaşıklaşan ve dinamik hale gelen yapısı, farklı disiplinlerden gelen bireylerin aynı örgütsel çatı altında aynı amaçlar doğrultusunda etkin ve verimli çalışmalarını zorunlu hale getirmiştir. Bu sebeple de, işletmenin tüm işlevlerini bütüncül bir bakış açısı ile değerlendirebilecek ve bu hususları faaliyet gösterilen ekosistemin diğer dinamikleri ile uyumlu yönetebilecek bireylere duyulan ihtiyaç artmıştır. Ayrıca, teknoloji alanında yaşanan baş döndürücü gelişmeler rekabetin sahasını genişletmiş ve özellikle üretim, dağıtım, pazarlama ve finans alanlarında entegre bilgi birikimine sahip, yönetsel becerisi yüksek insan kaynağına önemli ölçüde bir talep doğurmuştur.
Adı Soyadı
Dursun Delen
İlgi Alanları
Sağlık Analitiği, Karar Destek Sistemleri, Sağlık Analitiği, İş Zekası, İş Analitiği
Kurumdaki Durumu
Pasif Personel
20 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 10 / 20
Yayın Optimizing sustainable industry investment selection: A golden cut-enhanced quantum spherical fuzzy decision-making approach(Elsevier, 2023) Dinçer, Hasan; Yüksel, Serhat; Sonko, Mariama; Hacıoğlu, Ümit; Yılmaz, Mustafa Kemal; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme BölümüThis study aims to rank sustainable industry alternatives in emerging markets based on the directional impact relations of the environmental, social, and governance (ESG) index components for a socially and environmentally conscious investment strategy. To achieve this goal, we employ a golden cut-enhanced quantum spherical fuzzy decision-making approach. Specifically, we first use a quantum spherical fuzzy DEMATEL technique to identify the impact-relation directions and the weights of the ESG criteria set. Second, we employ the extended TOPSIS with the quantum spherical fuzzy sets to rank the industry alternatives concerning their directional ESG performances. The findings show that (i) H20 Emissions, Innovation, Community Investment, Gender Equity, Human Rights, and CSR Strategy are the main influencing factors based on their impact-relations directional scores, (ii) Resource Usage, Product Responsibility, and Shareholders’ Rights are the set of criteria under the influence of remaining ESG, (iii) Innovation is the strongest ESG performance criterion, whereas Human Rights is the weakest, (iv) technology and communication are the best-performing industries based on the directional ESG index performance scores, whereas real estate and basic materials industries are the worst performing. The study provides valuable and actionable insights for companies that aim to make socially responsible investments.Yayın A probabilistic data analytics methodology based on Bayesian Belief network for predicting and understanding breast cancer survival(Elsevier, 2022) Delen, Dursun; Delen, Dursun; Dağ, Aslı Z.; Akcam, Zümrüt; Kibis, Eyyub; Şimşek, Serhat; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüUnderstanding breast cancer survival has proven to be a challenging problem for practitioners and researchers. Identifying the factors affecting cancer progression, their interrelationships, and their influence on patients’ long-term survival helps make timely treatment decisions. The current study addresses this problem by proposing a Tree-Augmented Bayesian Belief Network (TAN)-based data analytics methodology comprising of four steps: data acquisition and preprocessing, variable selection via Genetic Algorithm (GA), data balancing with synthetic minority over-sampling and random undersampling methods, and finally the development of the TAN model to determine the probabilistic inter-conditional dependency structure among breast cancer-related variables along with the posterior survival probabilities The proposed model is compared to well-known machine learning models. A what-if analysis has also been conducted to verify the associations among the variables in the TAN model. The relative importance of each variable has been investigated via sensitivity analysis. Finally, a decision support tool is developed to further explore the conditional dependency structure among the cancer-related factors. The results produced by the proposed methodology, namely the patientspecific posterior survival probabilities and the conditional relationships among the variables, can be used by healthcare professionals and physicians to improve the decision-making process in planning and managing breast cancer treatments. Our generic methodology can also accommodate other types of cancer and be applied to manage various medical procedures.Yayın Crafting performance-based cryptocurrency mining strategies using a hybrid analytics approach(Elsevier, 2021) Chlyeh, Dounia; Hacıoğlu, Ümit; Tatoğlu, Ekrem; Yılmaz, Mustafa Kemal; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme BölümüCrafting and executing the best cryptocurrency mining strategy is vital to succeeding in cryptocurrency market investments. This study aims to identify the best cryptocurrency mining strategy based on service providers’ performance for cryptocurrency mining using a hybrid analytics approach, which integrates the Analytic Hierarchy Process (AHP) and Fuzzy-TOPSIS techniques, along with sensitivity analysis. The results show that hosted mining is the overall best cryptocurrency mining strategy, followed by home mining and cloud mining, based on both total cost of operations and cryptocurrency payout criteria. The empirical findings also suggest that the critical features of the highest performing service providers (i.e., hosted mining strategies and cloud mining) were their flexibility of contracts and the superior efficiency in terms of the daily payout. Finally, of the three location alternatives for home mining, Turkey ranks first compared to the U.S. and Europe.Yayın An explanatory analytics framework for early detection of chronic risk factors in pandemics(Elsevier, 2022) Delen, Dursun; Delen, Dursun; Davazdahemami, Behrooz; Zolbanin, Hamed M.; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüTimely decision-making in national and global health emergencies such as pandemics is critically important from various aspects. Especially, early identification of risk factors of contagious viral diseases can lead to efficient management of limited healthcare resources and saving lives by prioritizing at-risk patients. In this study, we propose a hybrid artificial intelligence (AI) framework to identify major chronic risk factors of novel, contagious diseases as early as possible at the time of pandemics. The proposed framework combines evolutionary search algorithms with machine learning and the novel explanatory AI (XAI) methods to detect the most critical risk factors, use them to predict patients at high risk of mortality, and analyze the risk factors at the individual level for each high-risk patient. The proposed framework was validated using data from a repository of electronic health records of early COVID-19 patients in the US. A chronological analysis of the chronic risk factors identified using our proposed approach revealed that those factors could have been identified months before they were determined by clinical studies and/or announced by the United States health officials.Yayın Big data analytics capabilities and firm performance: An integrated MCDM approach(Elsevier, 2020) Yasmin, Mariam; Kılıç, Hüseyin Selçuk; Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme BölümüThis study explores the interdependence of big data analytics (BDA) capabilities and the impact of these capabilities on firm performance using an integrated multicriteria decision-making (MCDM) methodology. Drawing on a rich data set obtained from selected case study firms in Pakistan, three MCDM tools, namely, intuitionistic fuzzy decision-making trial and evolution laboratory (IF-DEMATEL), analytic network process (ANP), and simple additive weighting (SAW), are employed to assess the relative importance of BDA capabilities and the relationship of these capabilities with the firm performance. The results show that BDA capabilities are interdependent, and infrastructure capabilities are the highest-ranked among all, followed by management and human resource capabilities, respectively. The SAW results indicate an association between BDA capabilities and firm performance. Moreover, BDA capabilities are more strongly related to operational performance than to market performance.Yayın An analytic approach to assessing organizational citizenship behavior(Elsevier, 2017) Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Arda, Özlem Ayaz; Delen, Dursun; Tatoğlu, Ekrem; Zaim, Selim; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüThis study examines the organizational citizenship behavior (OCB) of employees by designing and developing an analytic network process (ANP) methodology. The viability of the proposed methodology is demonstrated via the sales representatives of Beko, a brand name controlled by Koç Group. We first develop a conceptual framework based on qualitative research methods – in-depth interviews and focus group sessions. We employ the principles of ANP methodology to examine and discover the inter-relationships among the OCBs. This process results in a descriptive model that encapsulates the findings from both qualitative and analytics methods. Necessity, altruism, departmental, compliance, and independence are the underlying dimensions of OCBs found to be the most influential/important. The key novelty of this study resides in designing and developing a prescriptive analytics (i.e. ANP) methodology to evaluate the OCBs, which is rare in the area of organizational behavior (a managerial field of study that have been dominated by traditional statistical methods), and thus serves as a useful contribution/augmentation to the business/managerial research methods, and also extends the reach/coverage of analytics-based decision support systems research and practice into a new direction.Yayın An interactive decision support system for real-time ambulance relocation with priority guidelines(Elsevier, 2022) Delen, Dursun; Delen, Dursun; Hajiali, Mahdi; Teimoury, Ebrahim; Rabiee, Meysam; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüChanges in demand patterns and unexpected events are the two primary sources of delays in healthcare emergency operations. To mitigate such delays, researchers proposed the movement of idle ambulances between emergency bases as one of the effective ways to improve the areal coverage of future demands. In this study, we have developed a model-driven decision support system that simultaneously seeks to maximize demand coverage while minimizing travel time by optimally relocating emergency response vehicles. The developed mathematical model partitions and prioritizes demand into four categories and continuously updates them over time. Furthermore, it dynamically calculates the number of coverages in different regions based on the current location of idle ambulances. Also, we developed a real-time risk assessment DSS for recommended relocations, which could be utilized as a reference by the EMS user while implementing suggested relocation decisions. A real case study is used to validate the proposed DSS, and its final output is compared to the existing operational policy. The findings show that the average workload added to each ambulance due to relocations has significantly improved the response time and coverage ratio. Compared to the existing operational policy, the developed decision support system decreased the time to respond to calls, which was deemed to be more than to offsets the increase in travel time due to relocation. Furthermore, the system also reduced the total working time of all ambulances by about 9% per shift.Yayın Assessing the supply chain performance: A causal analysis(Springer US, 2019) Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Bayraktar, Erkan; Sarı, Kazım; Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüMeasuring the performance-related factors of a unit within a supply-chain is a challenging problem, mainly because of the complex interactions among the members governed by the supply chain strategy employed. Synergistic use of discrete-event simulation and structural equation modeling allows researchers and practitioners to analyze causal relationships between order-fulfillment characteristics of a supply-chain and retailers’ performance metrics. In this study, we model, simulate, and analyze a two-level supply-chain with seasonal linear demand, and using the information therein, develop a causal model to measure the links/relationships among the order-fulfillment factors and the retailer’s performance. According to the findings, of all the order-fulfillment characteristics of a supply-chain, the forecast inaccuracy was found to be the most important in mitigating the bullwhip effect. Concerning the total inventory cost and fill-rate as performance indicators of retailers, the desired service level had the highest priority, followed by the lead-time and forecast inaccuracy, respectively. To reduce the total inventory cost, the bullwhip effect seems to have the lowest priority for the retailers, as it does not appear to have a significant impact on the fill rate. Although seasonality (to some extent) influences the retailer’s performance, it does not seem to have a significant impact on the ranking of the factors affecting retailers’ supply-chain performance; except for the case where the backorder cost is overestimated.Yayın An integrated approach for lean production using simulation and data envelopment analysis(Springer, 2021) Zaim, Selim; Delen, Dursun; Zaim, Selim; Delen, Dursun; Buyuksaatci Kiris, Sinem; Eryarsoy, Enes; Zaim, Selim; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüAccording to the extant literature, improving the leanness of a production system boosts a company’s productivity and competitiveness. However, such an endeavor usually involves managing multiple, potentially conflicting objectives. This study proposes a framework that analyzes lean production methods using simulation and data envelopment analysis (DEA) to accommodate the underlying multi-objective decision-making problem. The proposed framework can help identify the most efficient solution alternative by (i) considering the most common lean production methods for assembly line balancing, such as single minute exchange of dies (SMED) and multi-machine set-up reduction (MMSUR), (ii) creating and simulating various alternative assembly line configuration options via discrete-event simulation modeling, and (iii) formulating and applying DEA to identify the best alternative assembly system configuration for the multi-objective decision making. In this study, we demonstrate the viability and superiority of the proposed framework with an application case on an automotive spare parts production system. The results show that the suggested framework substantially improves the existing system by increasing efficiency while concurrently decreasing work-in-process (WIP).Yayın An explanatory machine learning framework for studying pandemics: The case of COVID-19 emergency department readmissions(Elsevier, 2022) Delen, Dursun; Delen, Dursun; Davazdahemami, Behrooz; Zolbanin, Hamed M.; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüOne of the major challenges that confront medical experts during a pandemic is the time required to identify and validate the risk factors of the novel disease and to develop an effective treatment protocol. Traditionally, this process involves numerous clinical trials that may take up to several years, during which strict preventive measures must be in place to control the outbreak and reduce the deaths. Advanced data analytics techniques, however, can be leveraged to guide and speed up this process. In this study, we combine evolutionary search algorithms, deep learning, and advanced model interpretation methods to develop a holistic exploratory- predictive-explanatory machine learning framework that can assist clinical decision-makers in reacting to the challenges of a pandemic in a timely manner. The proposed framework is showcased in studying emergency department (ED) readmissions of COVID-19 patients using ED visits from a real-world electronic health records database. After an exploratory feature selection phase using genetic algorithm, we develop and train a deep artificial neural network to predict early (i.e., 7-day) readmissions (AUC = 0.883). Lastly, a SHAP model is formulated to estimate additive Shapley values (i.e., importance scores) of the features and to interpret the magnitude and direction of their effects. The findings are mostly in line with those reported by lengthy and expensive clinical trial studies.