Aksoy, Tamer

Yükleniyor...
Profil fotoğrafı
E-posta Adresi ORCID Profili WoS Profili Scopus Profili YÖK Araştırmacı Profili Google Akademik Profili TR-Dizin Profili SOBİAD Profili Web Sitesi

Araştırma projeleri

Organizasyon Birimleri

Organizasyon Birimi
Yönetim Bilimleri Fakültesi, İşletme Bölümü
Küresel rekabete ayak uydurmak ve sürdürülebilir olmak isteyen tüm şirketler ve kurumlar, değişimi doğru bir şekilde yönetmek, teknolojinin gerekli kıldığı zihinsel ve operasyonel dönüşümü kurumlarına hızlı bir şekilde adapte etmek zorundadırlar.

Adı Soyadı

Tamer Aksoy

İlgi Alanları

Finansal Muhasebe, Yönetim Muhasebesi, Stratejik Denetim/İç Denetim, İç Kontrol, Finans/Sürdürülebilirlik

Kurumdaki Durumu

Aktif Personel

Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Yayın
    Analysis of solar module alternatives for efficiency-based energy investments with hybrid 2-tuple IVIF modeling
    (Elsevier, 2023) Hacıoğlu, Ümit; Aksoy, Tamer; Hacıoğlu, Ümit; Aksoy, Tamer; Dinçer, Hasan; Yüksel, Serhat; Aksoy, Tamer; Hacıoğlu, Ümit; Mikhaylov, Alexey; Pinter, Gabor; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme Bölümü
    The purpose of this study is to examine optimal solar module investments. Firstly, key determinants of the performance of solar energy investments are evaluated by DEMATEL method with the 2-tuple IVIF sets. Moreover, the cell material alternatives for solar module investments are also ranked. For this purpose, an evaluation has been made by 2-tuple IVIF TOPSIS. The contributions of the paper are performing a priority analysis to understand the most significant factors to increase solar energy projects and creating an original model by the integration of DEMATEL and TOPSIS with the 2- tuple IVIF sets. The findings denote that crystalline silicon is the optimal solar panel module to increase the performance of these projects. In the short term, government subsidies can provide cost advantages to solar energy investors. It is not a very continuous practice to try to increase these projects only with government supports. The costs of solar energy projects should be reduced to solve this problem permanently. Owing to new technological developments, high cost problem of solar energy investments can be handled more successfully.
  • Yayın
    Complex fuzzy assessment of green flight activity investments for sustainable aviation
    (IEEE, 2022) Hacıoğlu, Ümit; Aksoy, Tamer; Hacıoğlu, Ümit; Aksoy, Tamer; Aksoy, Tamer; Yüksel, Serhat; Dinçer, Hasan; Hacıoğlu, Ümit; Maialeh, Robin; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme Bölümü
    The aviation industry harms the environment mainly via the creation of carbon emissions. Hence, action needs to be taken to ensure the environmental sustainability of the aviation industry such as the recycling of waste products, effective waste management and the introduction of energy efficiency measures. However, at the same time, the implementation of improvements to remediate such problems leads to the creation of additional costs for aviation companies. Companies thus need to conduct comprehensive priority analyses regarding the optimum strategy for the sustainability of the aviation industry. However, there is a very limited number of studies in the literature that focused on which approach should be prioritized. Accordingly, this study aimed at the assessment of the viability of investing in so-called green flight measures in the aviation industry, for which a completely original decision-making model was created. Firstly, the various strategic priorities were weighted and the impact-relation directions between them illustrated aimed at the identification of potential influences by means of a multi stepwise weight assessment ratio analysis (M-SWARA) methodology that incorporates bipolar q-rung orthopair fuzzy sets (q-ROFSs) and golden cut. Secondly, the various flight activities are ranked, and the potential impacts of these activities determined in terms of the strategic priorities of a sustainable aviation industry employing q-ROF as the elimination and choice translating reality (ELECTRE) technique. All the calculations were also computed with intuitionistic fuzzy sets (IFSs) and Pythagorean fuzzy sets (PFSs) aimed at verifying the validity of the findings. The analysis concluded that while energy efficiency comprises the most important factor in terms of strategic priority investment for the circular economy-based aviation industry, emergency response makes up the most crucial activity in the industry. Operational efficiency must be prioritized to decrease the amount of fuel consumed, in connection with which flight routes should be planned according to current weather conditions, which would serve to shorten flight times and, thus, help to increase energy efficiency. Such an approach would make a positive contribution to minimizing carbon emissions aimed at ensuring the sustainability of the aviation industry.